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1. INTRODUCTION

The non-perturbative renormalization of the scalar </>4-vertex is a central
problem in Euclidean quantum field theory [GJ73, FO76, Gal78, Gal79,
BCG + 80, Ba183, GK85a, GK85b, GN85, FMRS87, P90, BDH93]. The
key to its solution is the renormalization group [Wil71, Wil72, WK74,
Gal85, GK83, GK86, GJ87, R91, Bry92, FFS92, BG95]. Its renormaliza-
tion is a mapping through an increasing number of renormalization group
transformations, simultaneously tuning the 04-coupling besides other
parameters. The renormalization group brings an understanding of this
process as a dynamical system on a space of effective interactions. The
objects of principal interest in this dynamical system are the attractors,
given by fixed points and their invariant manifolds. The invariant ^4-curve
of the trivial fixed point is a canonical example. We present its non-pertur-
bative construction in the hierarchical renormalization group [D69, BS73,
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We study the invariant unstable manifold of the trivial renormalization-group
fixed point tangent to the </>4-vertex in the hierarchical approximation. We
parametrize it by a running ^4-coupling with linear step B-function. The
manifold is studied as a fixed point of the renormalization group composed with
a flow of the running coupling. We present a rigorous construction of it beyond
perturbation theory by means of a contraction mapping. Starting from a pertur-
bative approximant of order seven, we obtain a convergent representation in
dimensions 2 < D <28/9 with certain restrictions. The perturbative approximant
is logarithmically divergent in D = 3 dimensions.
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BS75, Ble77, CE77, Gal78, Gal79, GK82], Our method builds upon
[KW86a, KW86b, KW88a, KW88b, KW91, KW94], [P90, P93, Alb91],
and [RW96]. The outcome is a non-perturbative renormalized <^4-theory
without a detour to a limit procedure [Wie97],

The hierarchical model is defined by a non-linear transformation R,
acting on a space of functions Z((/>) of a complex variable <^>. They represent
local interaction Boltzmann weights. The transformation R has a trivial
fixed point Z u v ( (0) = 1. This fixed point represents the hierarchical massless
scalar field. The derivative of R at this fixed point Zu v(0) is a linear
operator, whose eigenfunctions are normal ordered products. One of these
eigenfunctions is the normal ordered 04-vertex, i.e., the rescaled Hermite
polynomial :$4:v. Its eigenvalue is L 4 - D , where L is a scale parameter, and
where D is a dimension parameter. We take both parameters to be real
valued, with L > 1 and 2 < D < 4. Associated with the pair, given by
Z u v ( 0 ) and :04: v , is a curve Z(0, g), parametrized by g, with the following
properties:

(I) Z(0, g) emerges from Zu v(0} tangent to :</>4 :v :

(II) Z((j>, g) is invariant under R up to an inverse flow of g:

This curve is called the ^-trajectory, and is an invariant curve in the
unstable manifold of Zuv(<j>). Eqs. (1) and (2) still leave room for
reparametrizations of g. A normal form in D < 4 dimensions is given by:

(III) The flow function d - 1 ( g ) is linear:

These properties (I), (II), and (III) determine Z((j>, g) uniquely as formal
power series in g, except at certain special dimensions, where a resonance
of power counting factors occur [RW96], Formal perturbation theory is
unfortunately divergent. We replace it by the following non-perturbative
construction.

The properties (II) and (III) require Z((j>, g) to be a fixed point of
R x 6*, the renormalization group composed with a flow of g. This
property will be the starting point of our construction. We thus look for a
non-trivial fixed point of RxS*. The property (I) needs to be modified.
The reason is that the O(g2) corrections cannot be uniform in <j>. Instead



we split Z(<j>, g) into two pieces, an approximate fixed point Z,(^, g),
which we compute from perturbation theory, and a correction term
Z2((/>, g). We choose both terms such that Z(<j>, g) is element of an
invariant cone in a certain Banach space of functions. We determine
Z,(0, g) sufficiently accurately such that the transformation of Z2(<^>, g)
becomes a contraction mapping. It follows that there exists a unique fixed
point in our invariant cone. Furthermore, the iteration of the contraction
mapping yields a convergent representation. It is this representation which
replaces the perturbative iteration of (I) , ( I I ) , and (III).

The contraction mapping method was suggested to us by the previous
construction of the hierachical non-trivial fixed point and its unstable
manifold [KW86a, KW86b, KW88a, KW88b, KW91, KW94]. Our small
coupling techniques were inspired by [GK83, GK86]. But we avoid the
separate treatment of small and large field configurations by the use of a
suitably weighted norm [P90, P93, Alb91].

This paper is organized as follows. In Section 2, we recall the
hierarchical renormalization group and the role of the Gaussian fixed point
in the construction of an invariant Banach space. In Section 3, we recall the
trivial fixed point, its spectrum, and the cumulant expansion. In Section 4,
we recall the formal perturbation expansion for the solution of (I), (II),
and (III) . In Section 5, we introduce a sequence of new interpolation for-
mulas. They provide the tools for our estimates of non-perturbative errors.
In Section 6, we estimate the error of the linear approximation by means
of a complex Cauchy bound. In Section 7, we compute a quadratic fixed
point of R x 8*. This quadratic fixed point serves to define the Banach
space in which we look for a non-quadratic fixed point. In the Sections 8
and 9, we recall the contraction mapping principle. In Section 10, we pre-
sent a real stability bound for the linear approximation. This bound is then
generalized beyond the linear approximation in Section 11. We prove a
stability bound for the perturbative approximants of order three, five, and
seven by showing the dominance of tree contributions. In the Sections 12
and 13, we estimate the error of the perturbative fixed point of R x 8*. In
conjunction with the results of the Sections 8 and 9, this completes the con-
struction. For the seventh order approximant, we prove the contraction
property for dimensions £><28/9, with certain restrictions. Our pertur-
bative approximant Z,(0, g) becomes singular in Z) = 3 dimensions. This
case is therefore excluded in the sequel. However, this is not a problem of
the contraction mapping method but rather a problem of finding a suf-
ficiently accurate approximate solution. Such an approximate solution can
also be found in D = 3 dimensions, namely by double perturbation theory
in g and g2 log(g). Since this case requires a special stability analysis with
slight additional complications, we postpone it to a separate article. This

Construction of the Hierarchical ((/-Trajectory 379



380 Wieczerkowski

article ends with a few conclusions and an outlook in Section 14. A few
useful formulas are collected in the appendix.

2. HIERARCHICAL RENORMALIZATION GROUP

Consider the hierarchical renormalization group as a model for
asymptotic freedom beyond perturbation theory [GK82, GK83, GK85a,
GK86, P90, Alb91].

2.1. Hierarchical Renormalization Group Transformation

The hierarchical renormalization group is a semigroup of transforma-
tions generated by the following non-linear operator R. Let R be given by

where a, /?, and y are real parameters, and where

is the Gaussian measure on R with mean zero and covariance y. Let

with real parameters L and D; with L > 1 and certain restrictions on D.
The meaning of L is that of a scale, the meaning of D is that of a dimen-
sion. Let a be integer valued, say L = 2 unless differently stated. Thereby,
we circumvent multi-valued functions without loss of physical generality.

The literature on the hierarchical renormalization group usually deals
with the normalized transformation

The technical reason is that the normalization constant tends to grow
exponentially upon iteration of (4). Our method will avoid this kind of
instability without the division of (7).

The definition (4) of R calls to be supplemented by a suitable space of
functions Z. A prototype of which is the following Banach space.

Let b be a real constant with h > 0. Let B be the complex strip
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Consider then the Banach space of complex valued analytic functions
Z: B -> C with the following properties:

(I) For all <t> e B, let Z( -(/>) = Z(<j>). We thus restrict our attention
to /2-symmetric functions.

(II) Let c be another real constant, c> —\/y, and let \\Z\\x,c be the
norm given by

Let Z be bounded in this norm, ||Z||00,C< oo; consequently, the Gaussian
integral in (4) becomes well defined.

Our choice of a function space will be adjusted according to our needs
as we proceed, with this prototype in our mind. Another prototype is the
analogous Banach space (with b = 0) of real valued continuous functions
Z: R -» R. Both kinds of Banach spaces turn the analysis of (7) into a well
defined mathematical problem. To represent an interaction Boltzmann
weight of a Statistical Mechanical system, we should also impose the
following positivity condition.

(III) For all ^ e R, let Z(<j>)e R and Z(0)>0; and thus Z(^) = e-v(0)

with V((j>)eU and V(-4)=V(+).

However, positive functions of this kind form a subset but not a linear sub-
space of our Banach space. To have Banach space theory available, we will
analyze our fixed point problem in the general linear setting (including
non-positive functions). The positivity of the outcome will be analyzed a
posteriori.

2.2. Gaussian Fixed Point

Basic insight about R is gained from the transformation of Gauss func-
tions. Gauss functions are transformed to Gauss functions according to

with transformed parameters
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Besides a trivial fixed point AUV=1, bUV = 0, one finds a quadratic fixed
point

The trivial fixed point serves as ultraviolet fixed point in 04-theory in
dimensions D < 4. The quadratic fixed point serves as a high temperature
fixed point in any dimension. Notice that a/?2 = L2 is independent of D.

2.3. Iterating Bound

From the quadratic fixed point, we obtain an iterating bound. It
suggests a distinguished Banach space, where the unit ball centered at the
origin is invariant. The significance of this Banach space is that it suitable
for an infinite iteration of renormalization group transformations.

It is constructed from the following complex bound. Suppose that

for some positive bounded functions A and B, where R(0) and 3(0)
denotes the real and imaginary part of 0 e C respectively. Then, if it exists,

with

Suppose that A and B are made such that

Then it follows that R(Z) satisfies the bound (13) if Z satisfies the bound
(13). The quadratic fixed point provides a suitable function A.

with parameters c and q such that c>0 and

yield a fixed point of (15). This pair of functions A and B satisfies in par-
ticular the bound (16).
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The operator R preserves the bound (13). Any space consisting of
functions, which obey (13) and whose other properties are also preserved
by R, is mapped to itself. In particular, we can choose the Banach space of
analytic functions on the complex strip IB with the norm

In this Banach space we can consider subsets or subspaces of functions
with additional properties. The unit ball in this Banach space, consisting of
functions such that

is an invariant subset. We remark that the operator R preserves analyticity.
If Z is an analytic function on IB with finite norm (19), then also R(Z) is
an analytic function on B. For this reason, we can restrict our attention to
analytic functions.

The origin of these statements is the renormalization of $4-theory.
There one studies the renormalization group flow with initial value

A natural question to pose is which properties of (21) are preserved under
the action of R. Analyticity in (j> is such a property. Other properties
require a refined analysis which is the subject of this paper.

3. TRIVIAL FIXED POINT

The trivial fixed point Z U V ( ^ > ) = 1 is not an element of this Banach
space, and in particular not an element of the unit ball. We will study per-
turbations in a cone emerging from the trivial fixed point. Their analysis
requires a modification of the norm (19), which encorporates a flowing
parameter, a running coupling. This section serves to setup basic notations
on an informal level.

3.1. Linearized Renormalization Group

The derivative of the operator R at a function Z defines a linear
operator DZR given by
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At the trivial fixed point Z U V ( < j > ) = 1 it becomes a rescaled Gaussian
convolution

This linear operator D1R is diagonalized by normal ordering. The normal
ordered monomials :tj>n:v = Pn(<j>, v), with normal ordering covariance v, are
defined to be generated by the Gauss function

They are thus rescaled Hermite polynomials

The generating function (24) transforms under D1R according to

It follows that

When the normal ordering covariance v equals its fixed point value

the normal ordered monomials Pn((j>, v) turn into eigenfunctions of D1R.
Their eigenvalues are
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The system of eigenfunctions {Pn(<j>, v)}n e N forms a basis of L2(R, d^v,(^)).
We will restrict our attention to the non-linear corrections in the case of
one particular eigenfunction. The full spectral theory of D1R will not be
needed for this. The explicit form of the even eigenfunctions is

The first few of them are collected in Table I.

3.2. Cumulant Expansion

Let Z((/>) = e-v(0) and R(Z)(\I/) = e -T(v )W. The cumulant expansion is
an expansion of T( V) in powers of V. It reads

where < • > T denote the cumulants to the moments < • >, given by

The cumulants of lowest orders are collected in Table II.

Table 1. Normal Ordered Monomials

Po(0, v) = 1
P2(0, v) = <02- v

P4(<j>,v) = <4 -6v<j>2 + 3v2

P6(<t>, v) = </>6- 15v04 + 45v2</>2 - 15v3

P8(<l>, v) = <t>8- 28v̂ 6 + 210v2f4 - 420v3>2 + 105v4

P 1 0 (<t>, v) = <l>10- 45v08 + 630v2<6 - 3150v3^4 + 4725v4V2 - 945v5

a0 = D

<72 = 2

<r4 = 4 - D

a6 = 6-2D
<76 = 8-3D

(T1 0=10-4D



Observe that the non-linear contribution is always negative. The cumulant
expansion is suitable for the computation of T provided that V is bounded.
It is also the basis of formal perturbation theory.

We will consider perturbations where V(<^) is a polynomial in </>, and
therefore unbounded. In this situation, the cumulant expansion applies
only in a small field region. See [GK82, GK83, GK86]. To avoid the
separate treatment of small and large field configurations, we will use an
exponentiated version of the cumulant expansion in conjunction with
estimates, which are true both for small and for large fields.

4. PERTURBATIVE ̂ 4-TRAJECTORY

In dimensions D<4, the eigenfunction P4(<l>,v) of D1R defines an
unstable perturbation of the trivial fixed point. Its eigenvalue is a/?4 = LCT4

with <74 = 4 — D. Consider the renormalization problem to construct a
renormalization invariant curve which emerges from the trivial fixed point
tangent to P4(<1>, v), and which is parametrized by a running coupling g
with linear step /?-function 6. In this section, we recall its solution in formal
perturbation theory in g from [RW96].

4.1. Fixed-Point Problem

Consider the renormalization problem to construct a curve K($, g) of
potentials, parametrized by g, with the following properties:
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The leading term in the cumulant expansion for T is the linearized
renormalization group D1R. For n=l, Eq. (31) becomes

Table II. Cumulants

<v>T = <Y>*
<V; V>T = <V2>a-< V>2,

<V; V; V>T = <V3>a,-3< V2)a < V>2 + 2< V>3

<V; V; V; V> T = < V4>a,-4< V3>a, < V>a-3< V2>2, + 12< V2>a, < V>2,-6< V>4,
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and

In other words, we look for a fixed point V of the transformation TxS*,
the renormalization group composed with an inverse renormalization flow
of g with linear step /7-function.

4.2. Perturbation Theory

Equations (34) and (35) have a unique solution in the space of formal
power series in g with polynomial coefficients, except at certain special
dimensions [RW96]. We write it in the form

A ^-independent normalization constant is included. Equation (35) yields a
recursion relation for the coefficients V(r), which determines them induc-
tively on the order r. This recursion relation, has the following explicite
form. From the cumulant expansion we deduce that, in the sense of formal
power series in g,

where si, = r — £j=1 sj. We separate out the term which depend linearly on
V on the right hand side of Eq. (37) to obtain a representation
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where K(V ) ( r ) depends on V(s) with s < r only. To every order r of pertur-
bation theory, the order r contribution on the right hand side of (37) is
transformed according to the linearized renormalization group. Equa-
tion (35) equippes us with a linear equation

whose left hand side is brought to diagonal form by normal ordering. The
right hand side of (39) comes out as a polynomial

with coefficients

Therefore, Eq. (39) furnishes a system of linear equations

for the coefficients V(r). Equation (42) determines V(r) unless

This situation was called an (r, n)-resonance in [RW96]. Resonances occur
at a discrete series of special dimensions. For instance, in three dimensions
both a (2, l)-resonance and a (3, 0)-resonance occurs. Resonances affect
only the perturbative part of our construction. They can be resolved by
log(g) corrections. For simplicity, we will restrict our attention to the case
of non-resonant dimensions in this paper.

To summarize, (34) and (35) have a unique solution in the sense of
formal power series in g. This solution is the perturbative ^-trajectory.
The aim of this paper is to construct a nonperturbative version of it. The
recursion relation given by (42) can be iterated to high orders by means of
computer algebra.

Table III. Perturbative Renormalization Group

T ( 1 ) (V) (w)=a<V ( 1 ) > r , B w
T(r)(V)(w) = a<V(2)>y,Bw-a2<V(1);V(1)>v,Bw
T(3)(V)(w) = a<V(3)>v.Bw-3a2<V(1); V(2))v,Bv +a3< v(1); V(1); V(1)>v,Bw
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5. INTERPOLATION FORMULAS

Interpolation formulas are basic tools for estimates of nonperturbative
contributions generated by Gaussian convolutions. In this section, we
recall a basic interpolation formula, and introduce thereafter a sequence of
improved interpolation formulas adapted to our fixed point problem.
Eq. (4) consists of a Gaussian convolution composed with a scale transfor-
mation parametrized by a and p. In this section, we investigate interpola-
tions for the Gaussian convolution without scale transformation (with
a = y 5 = l ) .

5.1. Covariance Interpolation

The most prominent interpolation formula follows from Gaussian
integration by parts. See [GJ87]. Differentiate

with respect to the interpolation parameter s to obtain

The interpolated Gaussian Convolution in (44) is thus the solution of a
heat equation with initial condition Z ( \ I / , 0 ) = Z(\I/). The interpolation
parameter goes from zero to one.

Its basic use in mathematical renormalization theory is to establish
Cauchy bounds of the following type. Suppose that Z(\l/,s] is an analytic
function of i/^, say in a strip around the real axis. Then it follows that

A typical value of the Cauchy radius is R = g-q, where g is a coupling
constant, with q = l/4 in ^4-theory [GK83, GK86, P90]. Provided that
Z(\l/, s) is bounded in a strip around the real axis, one gets an estimate of
the order g2q for the difference of boundary values.

5.2. Improved Interpolation

In the interpolation defined by (44), the Gaussian convolution is
compared to the identity operation. Consider the following different
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interpolation, which combines the previous one with the cumulant expan-
sion. Let Z(^) = e-V(0), and

The interpolation parameter s runs from zero to one. The boundary values
of the interpolation (47) are

the exponentiated Gaussian convolution, and

the ordinary Gaussian convolution. Differentiate (47) with respect to the
interpolation parameter s to obtain

The term in curly brackets { •} in (50) is called a downstairs factor in
mathematical renormalization theory. For polynomial potentials, downstairs
factors are again polynomials and hence unbounded. Their large field growth
is however compensated by the exponential decrease of the weight factor.
This mechanism is called domination. To illustrate it, we remark that

is ready for a Cauchy estimate on the exponential.



Construction of the Hierarchical (^4-Trajectory 391

Another interpolation formula, where not only the fluctuation
covariance but also certain running couplings are interpolated, appeared in
[P90].

5.3. Higher Interpolation Formulas

The interpolation (47) is the first in a series of formulas, where the
Gaussian convolution is compared to the exponentiated cumulant expan-
sion of any finite order. Consider the interpolated Gaussian moments

and their associated cumulants

For n >1, define

Consider then the interpolation given by

between

and

where R denotes the Gaussian convolution without scale factors a and ft.
The interpolation of (47) is the first of this series, with «= 1. Differentiate
(55) with respect to the interpolation parameter s to obtain
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The parameter integral under the expectation value serves as a projector

The downstairs factor in (58) is therefore of the order Vn + l, with two field
derivatives and truncated expectations. Notice that the truncated expecta-
tions select connected contributions. One can think of the right hand side
of (58) as a non-perturbative contraction. Equation (58) follows from

and

Consider the case n = 2 as an illustration of the cancellation which is
happening here. There we have that

The s derivative of (62) is given by
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The second term on the right hand side of (63) cancels the order V2 term
on the right hand side of

which gives (58) in the case n = 2. Throughout this section we have
assumed that the Gaussian expectations exist and define difierentiable
functions of their parameters. This of course has to be verified in each
particular theory.

6. LINEAR APPROXIMATION I

This section contains a nonperturbative bound on the error up to
which the linear approximation, defined by

is a fixed point of R x S*, where S = l/<x/?4. We shall use the first interpola-
tion formula (47) (with an additional scale transformation) to derive a
standard bound from constructive renormalization theory on the hierarchi-
cal renormalization group

6.1. Interpolation Formula

With the flow function d = I/a/?4, the potential (65) is a fixed point of
D1R x<5*; it satisfies

Consider therefore the interpolation formula
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from our interpolation toolbox. It interpolates between

and

For the linear approximation (65), we therefore have that

This equation is suited to bound the error of the linear approximation.
According to (50) and (51), the parameter derivative is here given by

By elementary analysis, (70) and (71) are well defined and valid identities
for the case of (65).

6.2. Large-Field Bound

The interpolated Gaussian convolution in the exponent of the weight
factor in Eq. (50) changes only the normal ordering covariance according
to the formula (27). Abbreviate (3\j/ +£ = (/>, to obtain

We have the following stability bound on the real part of the normal
ordered monomial P4(<t>, vs) as an entire function of <^eC:
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There exist positive constants a e R and b e R such that for all <j>e R
and xeC and se[0, 1] the following lower bound holds:

Large field bounds of this type were pioneered by [GK80, GK82, GK83,
GK86]. Exactly this bound appeared in [P90]. A proof of (73) is given in
Appendix 15.2.

6.3. Cauchy Estimate

Let us combine the stability bound (73) with the Cauchy estimate of
ineq. (46) to obtain an upper bound on the modulus of the parameter
derivative (71). The weight factor

in Eq. (71) is an entire function and obeys the stability bound

for all (j> e R, x e C, and s e [0, 1 ]. Consequently,
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Therefrom we obtain an upper bound on the modulus of (71). It reads

Notice that the decay constant of the Gaussian is proportional to

For D > 2, it can be made large by enlarging L, which is common practice
in mathematical renormalization theory. We will not need this in our anal-
ysis. We are now ready to estimate the quality of the linear approximation.

6.4. Error Bound

Let Z be given by (65). For all ^ e R and g >0, the modulus of (70)
satisfies the bound

We emphasize that this bound holds for large and small values of \jt. Unne-
cessary to point out that the error is small when g is small. The power gl/2

will not suffice for all purposes below. It will have to be improved upon.
Before entering this task, we will continue and see where we get with the
bound we have.
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7. QUADRATIC FIXED POINT

In this section, we will compute a g-dependent quadratic fixed point of
the composed transformation

It will supply us with a norm, with respect to which we will construct the
nonperturbative <^4-fixed point. As we will see, our quadratic fixed point
interpolates between the trivial fixed point ZUV at g = 0 and the quadratic
fixed point ZHT at g = co. Equation (80) represents the <^2 or high tem-
perature trajectory.

7.1. Transformation of Gauss Functions

Gauss functions are transformed to Gauss functions by (80) according
to the transformation law

with

the immediate generalization of the ^-independent transformation law
given by (10) and (11).

7.2. Fixed Point Value of b

As a fixed point equation for the function c(g) = 1 / b ( g ) we find a
linear difference equation

It has a one parametric set of solutions given by

where C is the free parameter. We restrict our attention to the case when
D < 4, and thus p > 0. The fixed point value of b is thus
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Its limit values are 6(0) = 0 and b(co) = bHT. In other words, we have an
interpolation between the trivial fixed point at g = 0 and the high tem-
perature fixed point at g= oo.

7.3. Fixed point value of A

At this fixed point b, we have that

We choose C > 0 to avoid troubles with the root. The fixed point equation
for A then becomes

We look for fixed points where A(g)>0. Exponentiate A(g) = ea(g) to
obtain another linear difference equation given by

The general solution to this equation is

Here C' is another free parameter at our disposal. We put C' = 0. In this
case we have that A(0) = 1 and A(ao) = AHT, and also the normalization
interpolates between the free fixed point and the high temperature fixed
point.

7.4. Small-fir Behavior

For small values of g, the function a(g) has the following behavior as
a function of gp:
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and thus

There remains the free parameter C. We will not attempt to optimize our
bounds by tuning C. Instead we choose C = cHT in the sequel.

7.5. Parameter-Dependent Norm

We have computed a Gaussian fixed point of the composed transfor-
mation of R x S*. For the parameter values C = CHT and C = 0, it takes the
form

with coefficient functions

where p = 2/4 — D. The analogy to the g independent case suggests the
following norm. Let g0 > 0 be a fixed number, a maximal value of g in all
below estimates, optimally infinity. Let ^c#(R x (0, g0), R) be the
Banach space of real valued continuous functions Z: (</>, g)\-* Z((j>, g) with
the following properties:

(I) Z(<j), g) is Z2-symmetric in (j>,

(II) Z((/>, g) is finite in the norm

We notice the option to restrict g to (e, g0), with e > 0 arbitrary small, in
order to exclude the point g = 0 which is special in the below constructions.
Furthermore, we notice the option to work on the hyperplanes of constant
g. Positive functions with Z((/>, g) form a subset but not a linear subspace.
Although only positive functions lead yield probability measures, we will
use the full Banach space to analyze the fixed point problem. The fixed
point will be shown to be positive in the sequel.
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As in the g-independent case, we have an invariant space. Functions
Z E £ obey

and consequently

The interior of the unit ball, given by functions Z e £ such that

is consequently contracted to zero. The unit ball itself is invariant under
R x S*. It follows that the norm of a non-trivial fixed point is larger or
equal to one.

8. INVARIANT CONE

We will look for a fixed point Z of R x 6* in the Banach space 2f. Our
strategy will be to write Z as a sum of an approximate fixed point Z1 and
a correction Z2, and to choose Z1 sufficiently accurately that the transfor-
mation of Z2 contracts. The constants below Ci, CT,, and gi will be under-
stood to be locally defined in this and the next section.

8.1. Splitting of Z

Given an approximate fixed point Z1, for instance the linear
approximation

we can split Z in a sum Z1 + Z2, and consider the transformation of the
correction term Z2 alone. The correction Z2 transforms according to

We find two contributions. The first contribution is the error up to which
Z1 is a fixed point of R x S*. The correction Z2 cannot be smaller than this
error, and it will therefore be important to choose Z1 as close to the fixed
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point as possible. The second contribution can be estimated in terms of its
derivative, or linearization. It is given by

The existence of this interpolation will follow from elementary analysis for
all choices of Z1 and Z2 considered in the sequel.

For the hierarchical renormalization group (4), it takes the form

8.2. Estimate on /?Z1(Z2)

Suppose that we have the following bounds on the approximate fixed
point Z1 and its error A(Z 1 ) .

Let C1, C2, a1, and g1 be positive constants. Let Z1 and A(Z1) satisfy
the bounds

for all 0 e K and g e [0, g1].
In the case of the linear approximation (99), both bounds (103) are

valid. We will come back to this issue when we will look for an optimal
value of a'. The size of the correction Z2 is at least that of A(Z1) . For
small g, A(Z1) is of the order g"1. Let <r2 be another positive exponent,
which is slightly smaller than a1, and assume that Z2 is of the order ga2 for
small g.

Let C3, a2, and g2 be positive constants, with a2<al. Let Z2 satisfy
the bound

for all 0eR and g£ [0, g2].
The following estimates prove that (104) is preserved by the renor-

malization group if the constants are suitably puzzled together.
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Under these assumptions on Z1 and Z2, the modulus of (101) obeys
the bound

and thus

for all (l/e R and g e [0, inf {g1, g2} ].
To otain an iterating bound, a*)"2 has to be smaller than

{Cl + C3(dg)"2}a-1. The volume factor a = LD is working against us. The
flow factor S"2 = L-(4-D)a2 is on our side. Furthermore, we can use the
smallness of g.

8.3. Estimates on Z1 and Z2

The bound (106) involves the positive constants C1, C3, and cr2. We will
adjust them so as to obtain an iterating bound. Start from the following
knowledge of Z1.

Let C4, CT3, and g3 be positive constants. Let Z1 obey the bound

for all ^eR and ge[0, g3].
We will not have to compute optimal values of these constants for any

choice of approximate fixed point but can content ourselves with the fact
that they exist.

Then there exists a positive constant g4 such that we have the bound

for all < ^ e R andge[0,g4] .
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We have assigned C1 a definite value at the expense of a diminution
of g3. The first bound of (103) follows, with C1 = C5 and g1 = g4.

Let C3 and a2 be given. Then there exists a positive constant g6 such
that

for all ge [0, g6]
From (108) and (109) it follows that

for all ge[0,inf{g2 , . . . ,g6}].
Let a, S, and a2 be such that

For a given scale L and a given dimension D, with L > 1 and D < 4, this
can be achieved by making (72 sufficiently large. For a given dimension D
and a given exponent CT2> with D<4 and D> — (4 — D) a2 <0, this can be
achieved by making L sufficiently large. We will use the first mechanism to
ensure the validity of (111).

Then we have that (106) satisfies the bound

8.4. Estimate on A(Z1)

Assume the following estimate on A(Z1) from the interpolation
technology.

Let C6, <74, and g 7 > 0 be positive constants such that we have the
bound

for all ^ e M and g e [0, g7].

for all i/^e R and ge [0, inf{g2,..., g6} ].
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We can then use a fraction of g"* to diminish C6.
Then there exists a positive constants C7, a5, and g8, with o5«?4,

such that

for all \l/eR and gs [0, g8].
Consequently, the second bound of (103) holds with C2 = C7 and

g1 = g8. The exponent a5 can be chosen arbitrary close to <r4 at the expense
of a further diminuation of g8. The bounds are then valid only for very
small couplings.

With all above assumptions it follows that

for all i / ^ e R and ge [0, inf{g2,..., g8} ].
The subspace of functions Z2, which obey the bound (104), then form

an invariant cone around the approximate fixed point Z1. The program is
now to use the contraction mapping principle to prove the existence of
a unique element Z2 such that Z1 + Z2 is a fixed point of R x d*. To
summarize the logic:

8.5. Iterating Bound

Let Z 1 ( ( /> , g) be a function which satisfies the following stability bound
(I) in addition to the following error bound (II).

(I) There exist positive constants C4, a3, and g3 such that

for all 0e R and ge [0, g3].

(II) There exist positive constants C6, <r4, and g7 such that

for all \l/ e R and g e [0, g7].
Then we have proved the following.
For all positive constants C3 and cr2> with a2

<a4, there exists a
positive constant g9 such that:
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If Z2(tj>, g) is another function which satisfies the bound

for all 0eR and ge[0 , g9], then A(Z1)(^, g) + RZ 1(Z2)(i^, g) is a func-
tion in 2f, which satisfies the bound

for all i ^eR and ge[0, g 9 ] .
The closer the value of a2 is to the value of a4, and the larger the

value of C3 is, the smaller is the value of g9.
We are thus led to search for an approximate fixed point Z,(</i, g)

which satisfies (I) and (II); in particular (II) with as large <r4 as possible.
Our notion of an invariant cone is mathematically somewhat casual.

To be precise, we should introduce another Banach space of continuous
functions Z2 with respect to the norm2

We should then consider perturbations Z2 in a ball around the origin in
this new Banach space. The contraction mapping principle applies to this
ball. We have an imbedding of this new Banach space into old one. The
invariant cone is then really the intersection of an imbedded ball with a
ball in 2£. Because this should not lead to confusion, we continue with the
somewhat casual notion of our invariant cone.

9. CONTRACTION MAPPING PRINCIPLE

In the previous section we have constructed an invariant cone of
perturbations Z2 of a given approximate fixed point Z1. We will now show
that the distance of the images of any two perturbations Z2 and Z'2 is
strictly smaller than the distance of Z2 and Z'2. This property is called the
contraction mapping property.

9.1. Differential Estimate

Consider two elements Z2 and Z'2 in our invariant cone. Then we have
that

2 I am grateful to the referee for bringing this point to my attention.
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and

A few words on its justification:

(I) Our invariant cone is convex since, for any two elements Z2

and Z2, the linear combination Z2 + s(Z2-Z2) is an element of it for all
s e [0, 1]. The reason is simply that

The linear combination Z2 + s(Z2 — Z2) is in particular in the domain of
the nonlinear operator RZ1.

(II) For all values of se(0, 1), the function Rz1(Z'2 + s(Z2-Z'2) +
s'(Z2 — Z2)) is continuously differentiable in s. Therefore we have the iden-
tity (122).

Suppose that we can show that for all se [0, 1 ]:

Then it follows that

and we have shown that Rz1 and hence R x S* is a contraction mapping.
We thus have to show that the operator norm of the linearization of

Rz1 satisfies the bound

for all elements Z2 of the invariant cone. In other words, we have to show
that the operator norm of the linearization of Rz1 is strictly smaller than
one.



Construction of the Hierarchical <t>4-Trajectory 407

9.2. Operator Norm of DZ2RZ1

The linearization of RZi at Z2 applied to Z'2 is given by

Let us assume that Z1, Z2, and Z'2 satisfy the following bounds.
Let C1, C3, C'3, o-2, and g0 be positive constants such that we have the

bounds

and

for all ^eR and ge[0, g0].
Then it follows that

Under all assumptions made in the previous section, we have that
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Divide by C'3 to obtain

for all Z2 in the invariant cone.
As a consequence, we have a contraction mapping. The contraction

mapping principle implies the existence of a unique fixed point in the
invariant cone.

9.3. Discussion

The contraction property relies on a sufficiently close approximation
Z1 to the fixed point. The parameters, which determine how close an
approximation is, are the scale L and an exponent <r. For the simplest
approximation

we found a — \. The break even dimension for this case, defined by

is in this case |. To go to higher dimensions, we either have to find a better
estimate for the error of the linear approximation, or we have to use a
better approximate fixed point by means of higher interpolations.

We should say that we are overweighting the volume factor a by the
flow factor 6". In the literature on mathematical renormalization theory,
the volume factor is usually divided out by taking the normalized renor-
malization group. In this situation one has to deal with the subleading
mass factor L2, the subleading relevant eigenvalue of the linearized renor-
malization group. This idea could also be implemented into our fixed point
scheme by the imposition of renormalization conditions and Taylor expan-
sions in the field variable.

10. LINEAR APPROXIMATION II

Reconsider the linear approximation to the 04-trajectory, given by
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The previous bound on its error as a fixed point of R x d used a bound on
its growth for large imaginary (/> together with Cauchy estimate. This
growth dictated the value g1/4 for the Cauchy radius, which then led to a
power g1/2 in the estimate. To get a better understanding of the factor g1/2,
we will rederive this bound using only real estimates.

10.1. Large-Field Domination

Let ^ e R in the following. Then we have that

and

It follows that

with
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In the estimate (138), we rediscover the factor ^/g. The remaining
exponential factor on the right hand side of (139) can be bounded by the
quadratic fixed point. Notice that this bound is true for all values of g. We
come to the following conclusion.

Let V(c/>, g) = (g/4!) Pa,(<j>, v). There exist positive constants C3, C4,
and g1 such that

for all <^>e R and ge [0, g 1 ] .

10.2. Interpolation Formula

Recall the interpolation formula for the linear approximation:

with

Large field domination implies the following bound.
Let V(<j>, g) = (g/4!) P4(<j>, v). There exist positive constants C5, C6,

and g2 such that

for all < j>eR and g e [0, g2].
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It follows that

The next step is to estimate the exponential by the quadratic fixed point.
For sufficiently small g this is possible in dimensions D > 0, which we will
assume subsequently. The error term of the linear approximation therefore
satisfies the following bound.

There exist positive constants C7, C8, a and g3 such that

We have therefore indeed and an invariant cone around the linear
approximation. The power g1/2 is however not sufficient to imply a contrac-
tion mapping at dimensions close to three.

11. STABILITY AT HIGHER ORDERS

Perturbation theory supplies us with a sequence of polynomial
approximants for the ^4-trajectory. We will prove a large field bound for
the higher order perturbative potentials. The bound requires explicit
knowledge of the perturbative potential in the tree approximation. We will
prove it for the orders three, five, and seven.

11.1. Perturbative Potential

Recall that the hierarchical renormalization group transformation (4)
has two parameters, a scale L and a dimension D. In our perturbative
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calculation, we trade the dimension D for the volume a = LD. We thus
choose the parameter values

For computational convenience, we normalize the expansion parameter
g differently in this section. We choose the normalization such that
V(4>, g) = gP4(0, v) + O(g2). Furthermore, we put L = 2 to reduce the size
of our expressions.

The perturbative potential of order r comes out as a polynomial of
order 2(r+l) in <j>. It has the general form

with polynomial coefficients

where A(-1) = 0. The perturbative coefficients A^J with n>r + 1 come out
as zero, those with n < r + 1 come out as rational functions in ot. Up to
order three they are listed in Table IV. The highest coefficients

are called tree graph coefficients. They can be computed independently
since their recursion relation decouples from that of the other coefficients.
Putting all others to zero defines a tree graph approximation. Up to order
seven, they are listed in Table V.

11.2. Tree Graph Bound

For a > 4, the tree graph coefficients up to order seven have alternating
signs

as can be seen from Table V. This is also true for all higher orders as can
be seen from the tree graph recursion relation, not to be written here. The
even order tree graph potentials are therefore unstable. For this reason, we
choose the order r to be odd.
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Table IV. Perturbative Fixed Point

y4 = 1
A(1) = -6

4(1) = 3

4(2) = -8(a - 4)

4(2) = 4(a - 4)(19a - 124)(a -16)1

4(2) = -96(a - 4)(3a3 - 5a2 - 200a + 832)(a - 16)-1(a - 8 ) 1 ( a + 8)-1

y(2) = 16(a - 4)2 (7a5 + 42a4 - 364a3 - 1024a2 - 8448a + 90112)(a - 16)-1(a - 8)-1

x(a + 8)-1(a3 - 256)-1

A(3) = 32(a - 4)2

y(2)(a - 4)2(5a2 - 193a + 944)(a - 16)-1(a - 64)-1

4(3) = 16(a - 4)2 (807a5 - 20672a5 - 418512a4 + 7034624a3 + 7758848a2 - 368689152a

+ 1108344832)(a - 16)-2(a - 64)-1 (a - 8)-1 (a + 8)-1 (a + 16)-1

W(3) = - 32(a - 4)2 (1037a9 - 15436a8 - 856880a7 + 5738496a6 + 32672768a5 + 448749568a4

- 4490133504a3 - 39599472640a2 + 402971951104a - 871878361088)

x(a - 16)-2(a - 8)-1(a + 8)-1(a - 64)-1(a + 16)-1(a3 - 1024)-1

A(3) = l6(a - 4)3(619a10-1108a9-648736a8-34944a7-4l459712a6 + 440483840a5

+ 1512701952a4- 9978249216a3+ 171815469056a2

-1942667395072a + 5480378269696)(a - 8)-1 (a + 8)-1 (a2 + 64)-1 x (a3 - 1024)-1

x(a + 16)-1 (a - 64)-1(a - 16)-2

Table V. Tree Graph Coefficients

4(2) = - 8/3(a - 4)

A(3) = 32 (a - 4)2

A(4) = - 1408 (a - 4)3

A(5) = 23296 (a - 4)4

A(6) = - 139264 (a - 4)5

A(7) = 2646016 (a - 4)6
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The stability bound is constructed recursively. Consider first the order
three approximation. Its potential can be estimated by means of

It follows that

The estimate yields an effective (^4-coupling constant

Its value at g = 0, i.e., its tree graph value, is computed to

independent of a. Since (154) is a rational function of g, it is continuous.
Thus positivity of (155) at g = 0 also holds for small g. We come to the
following conclusion. Fix the dimension D, avoiding resonances.

There exists a positive constant g0 > 0 such that

for all g e[0, g0].
To third order of perturbation theory, the potential satisfies the lower

bound

with polynomial coefficients A0 and A2 and rational coefficient p4(g). For
small g, we have a stability bound as in the linear approximation.
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This scheme iterates immediately to any odd order of perturbation
theory. To fifth order of perturbation theory we first estimate

to obtain an effective (^-coupling

We then estimate as above

to obtain an effective (^4-coupling

Its tree graph value comes out as

Therefore, we have again stability for small g.
The seventh order approximant is estimated by three bounds along

these lines. The tree graph value of the effective ^4-coupling to seventh
order of perturbation theory is

Thus also the seventh order approximant is stable for small g. It follows
that we have the following stability bound for the orders one, three, five,
and seven.

There exist positive constants C1, a1, and g1 such that Z((p,g) =
e -V(0,g) satisfies the bound

for all peU and ge[0, g1]
Presumably, this bound holds to all orders of perturbation theory with

g1 shrinking to zero as the order tends to infinity.
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12. INTERPOLATED CUMULANTS

In this section we derive an identity for interpolated cumululants using
a differential equation for the potential. The identity will be needed in the
next section.

12.1. Differential Equation

The interpolated Gaussian convolution

satisfies the differential equation

It follows that

satisfies the differential equation

12.2. Cumulant Expansion

Let Z0 be given by

Then we have that

with
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Comparing equal orders of g we get

and thus

Equation (173) is an identity for polynomial functions, which is all we need
here.

13. BEYOND THE LINEAR APPROXIMATION

Perturbation theory yields a sequence of polynomial approximants

for the ^4-trajectory. The polynomials V ( s ) (^ ) are determined such that for
all se {1,..., r}, we have the perturbative so called scaling relations

In this section, we investigate the nonperturbative error up to which these
perturbative approximants solve the fixed point equation for a given order
r e 2 N + 1.
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13.1. Interpolated Cumulants

Consider the following interpolation of the cumulant expansion to
order r. Expand

with coefficients

The interpolation parameter t goes once more from zero to one. Sup-
plemented with scale factors, it interpolates between

All operations are well defined since we are working with a polynomial
potential.

13.2. Interpolated Renormalization Group

Consider then the following interpolated renormalization group. Let

with t going from zero to one. It interpolates between

and

It can thus be used to estimate the error up to which Z is a fixed point of
R x S*. We have that
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where

From the interpolation formula for cumulants we obtain

When r= 1, (184) reduces to the previous interpolation formula given by
(71). The point with this higher interpolation is that the right hand side of
(184) is of the order gr+l. It offers the possibility to obtain a bound with
a higher power of g.

13.3. Estimate of the Downstairs Factor

Let us first consider the case when t = 0. We look for an estimate of
the modulus of the expression

Two facts come handy for this estimate. The first fact is the stability bound
on V. The second fact is the order gr+1 of the downstairs factor.

There exist positive constants C1, C2, a1, and g1 such that
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The perturbative potential is a polynomial of the form

where A0(g) = O(g). It follows that the downstairs factor is a polynomial of
this same form, namely

with certain polynomials n 2 n ( g ) , n e {1,..., 2r+ 1}. The cancellation effects
only terms up to the order gr. The two terms in Eq. (188) are of the orders

and

From this it follows that

with a certain polynomial M. Notice that order g7/2 in front of this
estimate. For the seventh order approximant, we get a power gr/2 which is
cabable of overweighting even the volume factor above three dimensions.
The exponential factor on the right hand side of (191) can then be
estimated by the quadratic g-dependent fixed point.
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There exist positive constants C3, C4, 72, and g2, with a2<r/2, such
that the modulus of (185) is thus bounded by

for all </>e R and g e[0, g2].
This bound is valid for t = 0. It extends to an analogous bound which

holds uniform in te [0, 1].

13.4. Error Bound

For all te [0, 1], the interpolation T,(V)((j>, g) is a polynomial of the
same form as V((/), g), namely

where A2n(g, t) are polynomials in g and t of the form J2n(g, t) =
ltree(1+3t/a)n-2 + gO(g,t)). We have computed both V((/>, g) and its
interpolation Tt( V)((j>, g) by means of computer algebra. Since they are
lengthy expressions, we will not reproduce them down here. The previous
tree graph bound is repeated to give the following result. The effective tree
graph coupling p4(0, t), defined as in the case t = 0, comes out independent
of t. By uniform continuity we find a stability bound which is uniform in
the interpolation parameter /e [0, 1].

There exist positive constants C5, C6, <?3, and g3, with a3<r/2, such
that

for all 0eR, £G[0, g3], and f e [ 0 , 1].
As a consequence, we have the following bound.
There exist positive constants C7, <r3, and g4, with a3<r/2, such that

for all </> e R, g e [0, g4], and t e [0, 1 ].
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Therefrom it follows that

for all </>e R and g e [0, g4].
With this error bound we can go back to the section on the invariant

cone and the section on the contraction mapping principle to conclude the
existence of the </>4-curve. The important point is that (196) is of the order
ga3 uniform in 0, divided by the quadratic fixed point. The higher order
approximant is thus close to the true fixed point for small g. The value of
a3 can be arbitrary close to r/2.

The break even dimension for seventh order approximant is

Higher dimensions than this require a higher order perturbation theory
and in particular an investigation of its stability. The properties of the per-
turbative approximants to any order of perturbation theory will not treated
here.

13.5. Concluding Remarks

13.5.1. Positivity of Z{<|>, g). We have constructed Z(0, g) by
means of a contraction mapping in a Banach space (which includes non-
positive functions): Z((j>, g) = Z1(<j>, g) + limn->00 Z2, n ( ( />, g), where Z2,0(^, g)
>-»Z2,1(0, g)-»Z2 , 2(^,g)i-> ••• i-»Z2, 0 0(0,g) is the sequence generated
from Z2, 0(0, g) = 0 by the contraction mapping. Since (4) maps positive
real valued functions to positive real valued functions, and since Z1(^, g)
is positive real valued, the sequence as well as its limit is positive real
valued. From this reasoning, it follows that the fixed point Z((j>, g) is non-
negative. By direct inspection, it can be shown that for all g e (0, g2]
there exists $(g) >0 such that for all \(j>\ < <P(g) we have that Z(<^, g) >0.
Thus there is a region of small fields, where strict positivity holds. For
|0| ^ *(g), we know that Z(0, g) >0. Suppose that there existed a 00 with
|^| >&(g) such that Z((/)0, g) = 0. Then we would have that

But the image of the Gaussian convolution is strictly positive. We have a
contradiction. We will not make these statements mathematically more
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be adressed after its construction, which does not use positivity. In par-
ticular, there remains the issue of an accurate lower bound on Z(</>, g) at
large (f>. Although this is an important piece of information, we do not need
it in the present construction.

13.5.2. D = 3 Dimensions. In its present form, the construction
excludes D = 3 dimensions. However, the obstacle is merely technical, not
conceptual. In D = 3 dimensions, Z 1 ( ( / > , g) = e-v1(0, g) does not have a
formal power series expansion in g. This can be seen directly from our per-
turbative fixed point listed in the appendix. The coefficients are rational
functions in a and some of them have poles at a = 8 (or D = 3 when L = 2).
On the other hand, we know from [RW96] that we can compute pertur-
bative approximants by double expansion in g and g2 log(g). It turns out
that these approximants have all properties needed for the contraction
mapping method to apply exactly as above. The point is that the tree graph
bound applies exactly as above because the g2 log(g)-insertions are sub-
leading corrections. We postpone a constructive version of the logarithmic
singularities on the three dimensional 04-trajectory to future work.

13.5.3. Dimensions 28/9 <D<4. The seventh order approxi-
mant suffices to obtain a contraction mapping in D < 28/9 dimensions.
The order r approximant suffices to obtain a contraction mapping in
D < 4r/2 + r dimensions. This bound is obtained from D = 4a/( 1 + a), see
(134), in conjunction with a = r/2. We have not proved the stability
estimate to all orders r of perturbation theory in this paper.3 However,
such an analysis can be done. It requires a computation of tree graph coef-
ficients and an analysis of the effective couplings in our tree graph estimate.
Another problem is that of further resonances. From [RW96], we know
that there is a discrete sequence of dimensions other than three where
resonances occur. At these dimensions, we cannot use directly the pertur-
bative approximant. However, it is very likely that they can be treated
analogous to the three dimensional case outlined above.

14. OUTLOOK

The study of hierarchical models as a laboratory for the renormaliza-
tion group analysis of asymptotically free full models was advocated in
[GK82, GK83, GK86]. Our main motivation for this study is to prepare

3 We have in fact proved the stability bound up to orders r = 99 by means of computer
algebra.
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the ground for an analogous study of the ^4-trajectory in the full setting.
From the present construction we anticipate that the perturbative approxi-
mants are promising candidates for approximate fixed points also in the
full model. Using a momentum space renormalization group, they have
been computed in the full model in three and four dimensions in [Wie97].
The perturbative part is indeed very similar to the hierarchical model. We
hope to generalize this method to the construction of the massless ^4-tra-
jectory in the three dimensional full model in future work.

The constructive work on the full ^4-theory includes [GJ73, GJ87,
FO76, MS77, BCG + 80, Bal83, GK86, Gal85, GN85, BG95, P90, Bry92,
BDH93, R91], and references therein. A lot of knowledge has thus been
gathered on the renormalization of <jd4-theory. None of these authors
however present the problem in this dynamical systems setting suggested in
[Wil70, Wil71, WK74]. We hope that our presentation as a generalized
renormalization group fixed point is a natural formulation from the dynami-
cal systems point of view and find that it deserves to be developped further.

Concerning hierarchical models themselves, even more knowledge is
available. We mention [CE77, EW86, KW86a, KW86b, KW88a, KW88b,
KW91, KW94, GK83, GK86, P90, Alb91]. There remain a number of con-
ceivable improvements of our construction for the hierarchical models. It is
conceivable that our fixed point technique can be brought to a form, where
one has estimates which are uniform in the coupling g. The reason for
my optimism is that the large g limit of our setting yields exactly the
framework in which the non-trivial fixed point was constructed [KW86a,
KW86b, KW88a, KW88b, KW91, KW94]. It would also be very pleasing
to prove that our ^4-trajectory, say in three dimensions, connects the trivial
with the non-trivial fixed point, the former serving as ultraviolet fixed
point, the latter serving as infrared fixed point. It would finally be very
pleasing to prove that the (^"-trajectory intersects the unstable manifold of
the non-trivial fixed point transversally. These are global aspects of the
renormalization group for which our small coupling analysis does not suf-
fice in its present form. A less sophisticated problem is the divergence of
perturbation theory. Using the perturbative approximants to any order of
perturbation theory should lead to troubles in the estimates without a large
field vs. small field separation. A clear understanding of this mechanism
would round up the picture. Last not least, log(g) corrections deserve a
better understanding in three dimensions.

15. APPENDIX

This appendix contains a proof of thew complex stability bound (73)
and the real stability bound (136).
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15.1. Basic Inequalities

Let a and b be two real numbers. A basic inequality is

It follows that

For e2 = 5, it follows in particular that

Another elementary inequality is

15.2. Complex Stability Bound

Recall P4(</>, v) from Table I. Let 0 e R and / e C. Then

We have that

and
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It follows that

where

Therefrom it follows that

with

Consequently, we have for all <j> e R and x e C that

the elementary stability bound in 04-theory.

15.3. Real stability bound

The matter of stability is however not tied to the matter of analyticity
in (f>. Let 0 e R. Then we have the lower bound
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Any lower bound on g<j>4 thereby implies a lower bound on gP 4 (0 , v). We
have the following general lower bound by a quadratic potential:

For the particular choice

it reads

Recall that bQU(g) indicates the g-dependent quadratic fixed point, and is
given by

so that

is positive in the range of dimensions D e (0, 4). It follows that

with
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For small g, the 0-independent terms behave powerlike:

Let a = inf {p, 2p - 1, 1}. Then we have that ae(g) = O(g") for small g:

There exist constants C1, a1, and g1 such that for all (/> e R and
£e[0,g1]:

Another quadratic stability bounds follows by taking b(g) constant in
(212).
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